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Owing to the conceptual complexity of functional diversity (FD), a multitude of
different methods are available for measuring it, with most being operational at
only a small range of spatial scales. This causes uncertainty in ecological
interpretations and limits the potential to generalize findings across studies
or compare patterns across scales. We solve this problem by providing a unified
framework expanding on and integrating existing approaches. The framework,
based on trait probability density (TPD), is the first to fully implement the
Hutchinsonian concept of the niche as a probabilistic hypervolume in estimating
FD. This novel approach could revolutionize FD-based research by allowing
quantification of the various FD components from organismal to macroecolog-
ical scales, and allowing seamless transitions between scales.

A Multi-Faceted FD
The responses of species to environmental conditions, disturbance, and biotic interactions, as
well as their effects on ecosystem processes, are determined by their functional traits (see
Glossary) [1–5]. Consequently, functional trait-based approaches have great potential to
address a variety of ecological questions [6], including the impact of global change on biodiver-
sity and ecosystem service delivery [3,7–9], ecological restoration [10], or the assembly of
biological communities [4,5,11]. These approaches rely on the adequate characterization of
functional diversity (FD) [12]. FD is a multifaceted concept encompassing a variety of
components [13,14] that can be considered at different scales, from local populations to wide
geographical regions [15–17]. The past decade has seen an explosion of methods to quantify
the different aspects of FD [18–20], causing much confusion in selecting appropriate methods
for specific questions [21]. Further, current approaches generally provide poor continuity
between spatial scales. In this review we synthesize existing methods and propose a novel
approach that reconciles existing concepts into a single framework. This framework will
effectively allow ecologists to navigate the jungle of existing methods, transition seamlessly
across multiple scales, and take full advantage of the current increase in trait data availability.

Estimating FD basically consists of summarizing the variation of traits between organisms [12].
The main challenge is that FD can be computed at multiple spatial scales, both within and across
different ecological units [15–17,22,23], causing uncertainty in its practical quantification.
Traditionally, a great deal of work has been carried out to characterize FD between species
in a community. This has generally been done by representing each species by its average trait
values [17,24], reflecting the assumption that interspecific variability should be considerably
larger than intraspecific trait variability (ITV) [25–28]. FD within-communities, thus often
assumed to be due mostly to differences between species, can be decomposed into three
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Glossary
Convex hull: smallest convex
volume that contains a set of points.
In trait-based ecology, it is used to
quantify the functional volume
occupied by a species or community,
as well as b-FD and its
decomposition into nestedness and
turnover components. Convex hulls
are sensitive to outliers and do not
detect gaps in the occupation of
functional space.
Ecological unit: any scale at which
it is meaningful to estimate FD.
Examples are individual organisms,
populations, species, communities,
metacommunities, geographical
regions, and continents.
Functional distinctiveness: the
degree to which an ecological unit
differs, in terms of functional traits,
from other units.
Functional divergence: the degree
to which the abundance in functional
trait space of the organisms
composing an ecological unit is
distributed toward the extremes of its
functional volume.
Functional diversity (FD): variation
of traits between organisms. It is
estimated as the variation of traits in
the functional space occupied by an
ecological unit. Different indices
estimating FD attempt to summarize
some specific aspect of this variation.
Functional evenness: regularity in
the distribution of the abundance in
functional trait space of the
organisms composing an ecological
unit.
Functional niche: region of the
functional space containing all the
trait combinations displayed by the
individuals of a species. Existing FD
approaches based on functional
niches, such as the convex hull,
consider functional niches as uniform
features, ignoring the fact that some
trait values within the functional niche
of a species are more likely than
others.
Functional redundancy: two
ecological units can be considered to
be functionally redundant if they have
the same trait values, and hence
occupy the same functional space.
Communities with high redundancy
are expected to be able to lose
species without great decreases in
ecosystem function.
Functional richness: amount of
functional space occupied by the
organisms in an ecological unit.

primary components (functional richness, functional evenness, and functional diver-
gence) [13,14], each potentially represented by different indices [14,19,20]. In parallel, some
of these indices, along with other specific ones [29,30], have been used to characterize FD
between communities, similarly to b-diversity in species composition (i.e., b-FD) [31]. The
profusion of methods to compute FD at each scale poses a challenge for ecologists and limits
the possibility to compare results across multiple studies. On top of this, satisfactory methods
are not available for some key biodiversity aspects, such as functional redundancy [7,32,33].
To further complicate the study of FD, empirical and theoretical studies are increasingly showing
that ITV cannot be neglected in addressing several key ecological questions [34–37]. ITV can
explain a substantial portion of total functional trait variability within communities [27,38–41], and
has considerable effects on population stability, species coexistence, and ecosystem processes
[35,42–44]. As part of the quest to incorporate ITV into FD assessments, recent years have seen
the development of methods considering ITV, rather than only species averages [17,24].
However, these new indices are often conceptually different from existing ones [17,45,46],
leading to further confusion for users.

TPD: Towards a Scale-Independent FD
If ecologists want to ultimately simplify the labyrinth of methods for quantifying FD, and make
results of different studies more readily comparable, they will need to define a single framework
that encompasses different approaches while providing the flexibility to move between multiple
scales. Below we show that the foundations of such a framework can be found in studies using
the concept of the niche as a hypervolume [47,48] and those considering the probabilistic nature
of functional traits [45,49,50].

The probabilistic nature of functional traits can be appreciated at different scales. Most notably,
the inclusion of ITV into FD calculations requires trait observations to be considered at the
individual (or even the within-individual) level [17,24,38]. The notion of individuals of a species
spread throughout an area of the functional trait space recalls the concept of the niche as a
multidimensional hypervolume proposed by Hutchinson [51]. A species could persist at any
point within the boundaries of the hypervolume defining its niche, but fitness is not uniform
across the whole hypervolume: there is ‘an optimal part of the niche with markedly suboptimal
conditions near the boundaries’ [51]. In the past years, given their relation with performance,
traits are increasingly being used to quantify the niches of species [36,52]. However, not all the
combinations of traits confer equal fitness [36], which implies that trait values within a species
[50], community [53], region [54], or even at the global scale [55] are not equally represented
across the whole range of possible values (Box 1).

These ideas, while being acknowledged [17,49,51,56], have not been completely implemented
so far. Most existing approaches seek to define functional niches of species by estimating the
boundaries of the region of the functional space that they occupy, using for example the convex
hull [48] or n-dimensional hypervolume [47] methods. These approaches do allow the expres-
sion of FD both within- and between species and communities [16,47], while also allowing the
decomposition of b-FD into nestedness and turnover components, in a similar way as for
species diversity [29,31]. However, simply characterizing the boundaries of functional niches
ignores their probabilistic nature.

Expressing functional niches as probability density functions, for example at the species
[25,56,57] and community levels [36,53,56], has been proposed as a suitable approach for
incorporating the probabilistic nature of niches in FD calculations. This option has already been
adopted by methods using the overlap between the TPD functions of species to estimate their
functional differences (Box 1) [45,49]. However, despite its potential and some conceptual
attempts at defining probabilistic hypervolumes [58], this approach remains vague and
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Functional trait: any morphological,
physiological, phenological, or
behavioral feature of an organism that
can be measured at the individual
level and that has an effect on its
fitness.
Functional trait space:
multidimensional space where the
axes are functional traits. Individuals
or species are placed in this space in
the coordinates given by their
functional traits.
Intraspecific trait variability (ITV):
variation in functional traits among
conspecifics. Although most trait-
based approaches consider only a
single average trait value for each
species to compute FD, it is
increasingly clear that the
consideration of ITV is crucial for
answering a variety of ecological
questions.
Trait probability density (TPD):
function representing the distribution
of probabilities of observing each
possible trait value in a given
ecological unit.

Box 1. Basics of the TPD Framework

TPD functions can be built for any ecological unit. By definition, TPD functions are probability density functions, in other
words continuous functions that are defined for the whole functional space. As such, the values of the TPD of an
ecological unit (e.g., population, community, or region) are directly proportional to the relative abundance of their
corresponding trait values within the unit, and integrate to 1 (Figure IA).

After building a TPD function for each ecological unit under study, an essential step for putting the framework into action is
to estimate the overlap between two different TPD functions (Figure IB shows examples for single and multiple traits). Let
us consider the TPD functions of two ecological units i and j (the following reasoning applies to any scale). The joint density
distributions of these two TPD functions can be divided into two different parts. One part corresponds to the overlapping
area between the two TPD functions, that is, the volume that is part of the density functions of the two communities
(Figure IB). Logically, the remainder of the joint density distributions is the part that corresponds to differences between
units. Because TPD functions integrate to 1, the dissimilarity between the two units (bO) can be then estimated as 1 minus
overlap (Figure IB) [84]. bO is bounded between 0, when two units are functionally identical (overlap = 1), and 1, when
there is no functional overlap between them. Considering niches as uniform features, as in the convex hull volume and
hypervolume methods [47,48], can result into biased estimates of overlap (overestimates in the examples in Figure IC).

It should be noted that, to perform operations and combine TPD functions from different species, it is more practical to
divide the functional space into a D-dimensional grid (D being the number of traits considered) composed of a great
number of equal-sized cells in which TPD is evaluated (Figure ID). Effectively, this means that the value of the function in
each cell corresponds to the probability of randomly extracting an individual with those traits from the population,
community, or region in question. Several operations can be performed on a cell-by-cell basis, including, for instance, the
weighted sum of the TPDS functions of all the species in a community that are used to calculate TPDC functions.
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Figure I. Basics of the Trait Probability Desity (TPD) Framework. (A) The TPD of an ecological unit reflects the
relative abundance of trait values (x) in that unit, being equivalent to the concept of probability density function. The
overlap between two TPD functions (i and j) is calculated as the minimum of the two TPD functions, independently of the
dimensionality of the functional space considered (B shows examples for one and two traits). Because TPD functions
integrate to 1, the dissimilarity between two ecological units (bO) can be calculated as 1-overlap. (C) Considering the
probabilistic nature of niches can yield results substantially different from methods that only consider the boundaries,
particularly when the functional trait space is not homogenously filled [55]. (D) Although TPD functions are continuous
functions (A), to perform operations it is more practical to divide the functional space into a high number (N) of equal-sized
cells [with (hyper)volume V], and estimate the value of the TPD function in each cell.
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underdeveloped. For instance, although some FD components such as richness, evenness, and
divergence were originally conceived using the probability distribution of traits in communities
rather than species averages [13], they have apparently never been applied this way. Unfortu-
nately, in the same way as existing methods of accounting for trait hypervolumes do not
incorporate the probability density of trait values [47,48], existing methods accounting for
probability density of traits have not considered multiple traits [13,45,50], except for some
recent preliminary attempts [56,58].

We present a way to integrate the probabilistic nature of trait distributions with the concept of
multidimensional hypervolumes. This integration provides a framework for quantifying the
different components of FD across multiple scales that unifies existing approaches. Our
framework is inspired by the concept of probability density functions which reflect the probability
of observing some specific value for a given variable. Because the framework applies to the
functional trait space, we refer to these functions as trait probability densities (TPD, Box 1).

The approach for calculating TPD functions using, for example, kernel density estimators (KDE)
[59] is based on four steps (summarized in Figure 1). Ideally, TPD functions can be even
considered at the individual level (TPDI; Figure 1, step 1), with various measures within an
individual [38]. Because these data are generally unavailable, TPDI values can be approximated
using the measured traits and an estimated variability [47,60]. The TPDI values of each species
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Figure 1. Illustration of the Steps Necessary To Implement the Trait Probability Density (TPD) Framework at Different Scales. In the example, a kernel
density estimator (KDE) [59] is associated with each individual of each species (TPDI; step 1 shows five individuals for each of the five species, indicated by arrows). The
sum of all the TPDI values of a species yields the trait probability distribution of that species (TPDS; step 2). Depending on the amount and type of data that are available,
other methods such as Gaussian mixture models [85] or multivariate normal distributions [58] could be used to obtain TPDS functions. The next stage (step 3) involves
combining the TPDS functions of the species present in a given community (in the example, three communities composed of a varying number of species; circle size
indicates local relative abundances). Each TPDS can be rescaled according to the relative abundance of the species in each community, simply by multiplying these
factors. After this, and given that relative abundances sum to 1 across all species in a community, the sum of the integrals of all the rescaled TPDS functions in each
community is 1. We can then sum the values of the rescaled functions of all the species in each community, obtaining a function (TPDC) that represents the probability
density function of the whole community (step 3). The integral of any TPDC equals 1, and its value for each trait value is directly proportional to the relative abundance of
that trait value in the community. The final step (4) consists of aggregating the TPDC functions of the communities from a given region, following a similar procedure to the
ones presented in the previous steps, resulting in the TPD of the region (TPDR; step 4). Biologically, TPDS, TPDC, and TPDR represent the probability of randomly
extracting an individual with a given trait value from a species, community, or region, respectively. The framework can be expanded to larger or smaller scales: from using
several measurements for one individual [38] to estimate TPDI, to building TPD functions at any spatial scale (up to the global scale) by combining the TPD functions of
lower hierarchical units. Note that multiple traits can be incorporated by using multivariate kernel functions in step 1.
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are then summed, yielding a collection of TPDS functions (Figure 1, step 2) which can be
aggregated (with or without considering the abundance of individual species) to form the TPD
functions of the communities they occur in (TPDC; Figure 1, step 3). Notice that, when trait
information for a single species is available at different sites, it is possible to compute a separate
TPDS for each population of that species, thus accounting for phenotypic differences associated
with environmental heterogeneity or genotypic differentiation [28,57]. The TPDC functions can in
turn be aggregated to form a TPD for the region (e.g., meta-community) in which they occur
(TPDR; Figure 1, step 4).

Below we show first how the TPD framework reconciles existing schools of thought in comput-
ing FD, while fixing several existing problems with individual indices. We then demonstrate that it
provides great flexibility for partitioning FD between scales, and decompose b-FD [29,31] for any
type of ecological unit. Finally, we illustrate the potential of the framework to advance trait-
based ecology by proposing a pure quantitative estimator of functional redundancy [33] at any
spatial scale, which is lacking in the literature.

Incorporating Existing Methods into the TPD Framework
The TPD framework has the potential to unify existing FD approaches into a single and consistent
structure, effectively incorporating ITV and the multidimensional nature of functional trait space
across scales. In this section we first present corresponding adaptations of weighted mean trait
values (TWM) [3], FD components [13], and of any method based on the trait dissimilarity between
ecological units [61–65], highlighting when and how these adaptations solve several problems
associated with existing approaches. We then provide two examples of novel tools that are
possible owing to the development of the TPD framework: simulations for predicting population
and community functional structure [53,56,66], and functional redundancy.

FD Components
While the three primary components of FD within communities (richness, evenness, and
divergence) were originally described in terms of probability density functions [13], existing
methods for calculating them rely on a single average value per species, deviating from the
original probabilistic context [14,20]. The use of TPD functions permits a return to the initial
conception by providing feasible estimators of these components that incorporate ITV
(Figure 2A–C). The TPD-based approach explicitly considers species abundances and ITV,
is sensitive to gaps in the functional volume, and is less sensitive to outliers [47], making it
preferable to pre-existing methods that use the convex hull volume in the calculation of FRic and
FDiv [14]. Moreover, it permits estimation of the amount of functional space occupied by a
community even when there are fewer species than trait dimensions. With respect to the
hypervolume method [47], FRic has the advantage of being expressed in the same units as
the trait data, making directly comparable the results from different studies. In addition, TPD-
based FEve can vary independently of evenness in species abundances, being a pure indicator
of evenness in the abundance of traits [19], and is also not trivially correlated with FRic [67]. The
same applies to FDiv, which in other approximations is also overdependent on abundance
differences between species [14].

Dissimilarity-Based Indices
Several indices [61–65] can be incorporated into the TPD framework by using dissimilarities in
terms of the overlap between pairs of TPD functions, generally between species, rather than
dissimilarities based only on average trait values (Figure 2D). The use of dissimilarities that are not
based on overlap generally impedes the consideration of ITV (but see [24]). Moreover, dissim-
ilarities based on average values must be standardized when combined with other traits [30,68],
which means that results depend on the species pool considered. By contrast, overlap-based
dissimilarities between species yield more context-independent results, which are also more
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consistent with biologically expected patterns [50]. Using the TPD approach, it is possible to
estimate the average, minimum, maximum, and total overlap between the species in a com-
munity [17,50,57], or any other scale (see ‘Diversity Between and Across Ecological Units’
section).

Trait Predictions
Raw TPD functions can also be directly used for applications predicting the functional structure
of populations and communities along environmental gradients. For example, the original version
of the ‘Traitspace’ model of community assembly [56] uses the probability density distributions
of the traits of species (TPDS) to locate species in functional trait space. Subsequently, the model
estimates the probability that simulated trait values along environmental gradients belong to
each species, thus providing an estimate of the relative abundances of species along environ-
mental gradients. A subsequent implementation of the model samples TPDC values to simulate
potential trait values consistent with a given set of environmental conditions [53], and thus the
potential species pool. In general, any application requiring predictions of trait values from a
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Figure 2. Several Existing Approaches Can Be Incorporated into the Trait Probability Density (TPD) Framework. Functional richness (FRic; A) is the amount
of functional volume occupied by a TPD, which can be estimated as the sum of the hypervolumes (or range in the single-trait case) of the cells where TPD is greater than 0,
and is therefore independent of species abundances. Functional evenness (FEve; B) is an indicator of evenness in the distribution of abundance within occupied functional
trait space. Communities where all trait values have a similar probability should have high FEve values, and vice versa. FEve can be estimated as the overlap between the
TPD of the considered unit and an imaginary trait distribution occupying the same functional volume with uniform probabilities throughout. Functional divergence (FDiv; C)
is an indicator of the distribution of abundances within the functional trait volume. Communities where the most abundant trait values are near the extremes of the
functional volume should have high FDiv, and vice versa. The abundance-weighted distance to the center of gravity of the TPD proposed in [14] can be used as an
indicator of FDiv, using calculations based on the relative abundance of individual cells within the TPD instead of on species average trait values and species abundances.
Dissimilarity between units (D) can be calculated from overlap between their TPD functions. Finally (E), TPD functions can be used to randomly draw trait values consistent
with those present in a given unit (e.g., population, community, region).
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given population, community, or region could use TPD functions to randomly draw these values
using a simulation approach (Figure 2E).

Functional Redundancy
Recent literature on functional traits has emphasized the importance of functional redundancy
within a community as a potential control on community resilience and resistance [69,70].
Basically, two species can be deemed as functionally redundant if they have the same trait
values, in other words if they occupy the same portion of the functional space. Although it is
unlikely that any two species will be totally redundant in terms of multiple traits [71], partial
redundancy between species – species sharing part of their functional niches – is common, and
could allow communities to lose some species without losing ecological functions. According to
this concept, the removal of a highly functionally-redundant species from a community should
not result in a substantial reduction of the functions of the community. Despite the practical and
theoretical importance of redundancy, all existing approaches to quantify it have serious short-
comings. Box 2 summarizes these shortcomings and shows a novel way to quantify functional
redundancy that can even be applied to specific regions of the functional space corresponding
unequivocally with the concept of redundancy.

TWM Values
TWM values provide information about the dominant traits in an ecological unit [72,73].
Estimating TWM is especially relevant in the context of the mass ratio hypothesis [74], which
estates that the traits of the dominant species in a community are the main determinants of
ecosystem functioning [75]. Both in the uni- and multivariate context, TWM is indicated by the
center of gravity of the corresponding TPD distribution.

Diversity Between and Across Ecological Units
As anticipated above, the promise of the TPD framework goes well beyond calculations
within units. TPD functions can be used to evaluate mechanisms driving the spatial or
temporal differences in the functional structure between populations, communities, or
regions, that is, b-FD (see [76,77] for reviews on the questions that can be tackled by
studying b-diversity). We envisage that the TPD framework will lead to new techniques for
estimating diversity across scales, for example quantifying the contribution of individual
species to community diversity or how a given habitat type contributes to the diversity of
a region.

Decomposing b-FD
Functional differences in the TPD framework can be evaluated through overlap-based dissimi-
larity at any scale (Box 1) [49]. This comes with the advantage that dissimilarities estimated this
way are independent of the considered species pool (see ‘Dissimilarity-Based Indices’ section),
which permits the direct comparability of results from different studies. Overlap-based dissimi-
larity quantifies the differences between pairs of units (e.g., populations, communities, or
regions). However, two pairs of units with the same percentage of dissimilarity (the same value
of bO) can have substantial differences in the way in which they differ. Consider for instance the
case of two communities that are highly dissimilar because each occupies a part of the functional
space that is not occupied by the other. By contrast, another two communities could also be
highly dissimilar even when they occupy the same part of the functional space but where traits
are present in the two communities with different abundances. This issue was solved for
taxonomic dissimilarity by decomposing it into two components: turnover, as a result of species
replacement, and nestedness, owing to differences in species richness [31]. The extension to
functional dissimilarity considers the overlapping and non-overlapping fractions of the convex
hull-based hypervolumes of the considered communities [29,78]. However, as discussed earlier,
convex hull volumes ignore the probabilistic nature of FD. The TPD framework allows
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Box 2. Functional Redundancy

Functional redundancy should ideally measure the degree to which traits are represented by multiple species in an
assemblage. High levels of redundancy imply that loss of a single species should not affect the functionality of the
assemblage because other species with similar traits remain [86,87]. Uncertainty exists, however, in estimating this
component of FD. Most attempts to quantify functional redundancy use a functional group approach [7,88], involving
subjective decisions, such as the number of groups to consider and the classification of species into groups. Moreover,
this approximation deems the species in the same group to be totally equivalent, and totally different from those in other
groups. Existing methods that do not rely on functional groups generate other complications. For instance, studying
redundancy through the patterns of covariation between species richness and FD [89,90] does not yield redundancy
values for each individual community, hampering comparability between studies. Finally, with methods based on species
dissimilarities calculated using species averages [91], redundancy could potentially increase when a new trait is taken into
consideration. Such an outcome is biologically counterintuitive because the proportion of functional space shared by two
species cannot increase when extra dimensions are considered [33]. TPD-based redundancy (FRed; Figure I) overcomes
these problems: there is no need to classify species into discrete functional groups, there is a unique and biologically
meaningful value of redundancy for each community, and redundancy cannot increase when new traits are added. FRed
can be easily estimated by calculating the average number of species in an assemblage that have the same trait values
(Figure I). Moreover, redundancy can be estimated at specific areas of the functional trait space to detect trait
combinations that are over- (several species occupying that portion of the space; over-redundancy [92]) or under-
represented (Figure I).

In practical terms, the functioning of communities with highly-redundant species should be more resistant to species
extinctions. FRed can be applied in the context of ecological restoration: similar species should compete more strongly
for resources than dissimilar species [93]. Therefore, projects aimed at excluding non-native invader species can select
combinations of species highly redundant with respect to the invader [10,94]. Further, evaluating the redundancy of
individual species at the community or regional pool scales can inform about the importance of each species for different
functions, and hence about the vulnerability of such functions [32,82]. This highlights the potential usefulness of the
estimation of redundancy at multiple scales. For example, community-level redundancy might be low due to competitive
exclusion but, if there is high redundancy at the regional level, then one species lost from a community could be replaced
by a functionally similar species from the regional pool.
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Figure I. Average Functional Redundancy of a Community. (A) The rationale behind the calculation of functional
redundancy (Fred) is simple: for each of the N cells of the grid we can count the number of species (M) that have a trait
probability density (TPD) value greater than zero. This method effectively counts how many species display each trait
value, and then calculates a weighted average of that number, using the value of TPDC in the cell as the weighting factor.
After subtracting 1, FRed expresses the average number of species (taken across cells) that could be removed from the
community without reducing its functional volume (i.e., without losing an occupied cell from the grid). Consequently, FRed
will be equal to 0 when all species are functionally unique (bottom panels in B), and equal to S-1 in the case in which the S
species are totally functionally redundant (top panels in B). Following this approach, redundancy can also be calculated at
the regional level (using TPDR), and also at specific areas of the functional space, revealing vulnerable (i.e., right tail of
TPDC in A) and over-redundant (i.e., central part of TPDC in A) areas.
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decomposition of the functional dissimilarity between ecological units while avoiding the short-
comings of convex hulls.

The decomposition of functional dissimilarity has two complementary components. The first is
due to the parts of the functional volume of the joint distribution that are exclusively, or uniquely,
occupied by one of the units but not by the other (PU). The second is due to the dissimilarity in the
amount of relative abundance in functional trait space included, or nested, in the joint volume
(PN). The procedure to estimate these components is relatively simple, as shown in Figure 3A.
High levels of functional dissimilarity between units of the same hierarchical level can be the result
of different processes; the decomposition of bO helps to disentangle them. For example, when
two communities occupy different parts of the functional space, PU will account for the greatest
proportion of dissimilarity. On the other hand, when two communities share the same part of the
functional space, PN will approach 1 (Figure 3B).
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Figure 3. Decomposition of Functional Dissimilarity. Dissimilarity (bO) can be decomposed into two complementary
components: one due to the dissimilarity in the relative abundances of traits shared by the units (PN), and the other due to the
parts of the functional volume that are exclusively occupied by one of the units, but not by the other (PU). The joint density
distributions of two units can be divided into two parts: one corresponding to the overlapping area between the trait
probability density (TPD) functions (red color in A), and one corresponding to the dissimilarity, which can be further divided
into B (blue tones in A) and C (green tones in A). B (and also C) can be further decomposed into two complementary
subparts: ‘BN’ is the part of B that corresponds to traits shared by the two units (i.e., the part of B that is ‘above’ the
overlapping part, indicated by dark tones), and ‘BU’ is the part of B that corresponds to traits that are present exclusively in
unit i, but not in unit j (indicated by light tones). The examples (B) show, in 1D and 2D, two pairs of communities with the
same bO; a great part of the dissimilarity in the first pair is due to communities occupying different portions of the functional
space, whereas in the second pair the functional volume occupied by one community is a subset of the functional volume
occupied by the other. Decomposing bO into PN and PU allows us to discriminate the underlying patterns leading to
dissimilarity, which would be undetected otherwise.
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Overlap-based dissimilarity, as implemented by the TPD approach, allows a smooth transition
across multiple scales (from populations to regions) and provides great flexibility in partitioning
functional trait diversity between scales. It has important advantages with respect to existing
methods. First, it overcomes the shortcomings of the convex hull volume and hypervolume
methods [14,47]. In addition, the decomposition of dissimilarity between PN and PU was not
possible using dissimilarity-based methods for diversity partitioning [61,62,64]. Lastly, functional
dissimilarity in the TPD framework is based on set-theory, which yields comparable estimates of
b-diversity and its components across different types of diversity (taxonomical and functional)
using a similar framework [31].

Across Scales
One of the greatest advantages of using overlap-based dissimilarities within the TPD framework
is that the concept and properties of TPD functions are independent of the scale considered. As
we mentioned earlier, different components of FD (richness, evenness and divergence) can be
computed at different scales, in other words within populations, within species, within commu-
nities, within regions, etc. Each scale can be related to hierarchically superior scales, for example
to estimate how FD of local populations contribute to the total FD of a species in a region, or how
a species contributes to the FD of a community, or how a community contributes to the FD of a
region. By applying this type of approach, existing attempts to partition FD across scales
[16,17,79] can be easily accommodated and expanded to new ones.

In addition, it should be noted that bO can also be calculated between units in different
hierarchical levels. For instance, one could calculate the dissimilarities between the TPDS

functions of all the species in a community and the TPDC of the community (the same could
be done at the regional scale, using TPDR instead of TPDC). In these cases, individual dissim-
ilarities indicate the amount of functional differentiation of each species with respect to the
combination of all the species. As such, the dissimilarity of a single species with respect to the
local or regional pool of species (indicated by TPDC and TPDR, respectively) is an estimator of the
functional distinctiveness of that species [32] in the community or region. This information can
be used in combination with indicators of species rarity to inform decisions regarding the
protection of functionally-unique species or ecosystems [32,80,81], or to estimate the potential
impact of species extinctions on ecosystem functioning [82].

Concluding Remarks
Because FD encompasses a variety of concepts and components, a combination of
conceptual and mathematical approaches has, to date, been necessary to quantify it
comprehensively [1,19,72]. In this paper we have shown how the TPD concept can be
applied to individuals, populations, communities, and regions, and we have provided an
assortment of methods to estimate several aspects of FD using one or multiple traits within a
single framework. The TPD framework implements, for the first time, the Hutchinsonian
concept of the niche as a probabilistic hypervolume, overcoming limitations of existing
methods for FD quantification. It permits estimation of all aspects of FD at all scales,
and can be adapted to different objectives depending on the research question. By adopting
a point of view based on trait distributions, and by allowing full comparability between
different scales, the TPD framework is specially promising for studying biodiversity–ecosys-
tem function relationships, including invasibility [10], the effects of functional redundancy on
the stability of communities [32], and the contribution of species and community trait
structure on the functioning of ecosystems [82]. Most importantly, we show that, when
applied appropriately (Box 3), these methods encompass the existing classes of approaches
to quantifying FD (FD components, dissimilarity-based, and hypervolume-based indices),
thus providing a single, consistent, and intuitive framework that embraces the probabilistic,
multidimensional, and multiscaled nature of FD.
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In a context of rapid environmental change and associated losses of species, it is essential to
predict changes in species composition and ecosystem functioning from local to global
levels [32,77]. This involves the development of standardized tools to characterize these
impacts, while taking full advantage of the increasing availability of trait data that the field of
functional ecology is currently experiencing (see Outstanding Questions). In this sense,
graphical representations of the effects of competing hypotheses on the functional structure
of ecological units [21] emerge as a powerful way to select the most adequate TPD-based
metrics for different ecological questions. We have shown here some examples, but the
number of potential applications of the framework is considerable. For example, the potential
of the TPD framework to assess community assembly rules or ecosystem functioning can be
increased if used in combination with phylogenetic dissimilarities between species, particu-
larly when there are unmeasured and potentially important traits [83]. In this sense, we want
to emphasize that we do not consider the TPD framework as a definitive and closed
collection of methods,  but rather as a first step towards a unified framework to accommo-
date the probabilistic and multidimensional nature of the functional facet of biodiversity. We
hope that the inclusion of these methods in the toolbox of the ecologist will improve their
ability to predict and understand the consequences of environmental changes on
ecosystems.
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